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The Hellan-Herrmann-Johnson Method: 
Some New Error Estimates and Postprocessing 

By M. I. Comodi* 

Abstract. We analyze the behavior of the mixed Hellan-Herrmann-Johnson method for 
solving the biharmonic problem A2V) = f. We show a superconvergence result for the 
distance between Vph (the approximation of the displacement) and Ph4V (where Ph is a 
suitable projection operator). If the discrete equations are solved (as is usually done) by 
using interelement Lagrange multipliers, our superconvergence result allows us to prove 
the convergence, in suitable norms, of the Lagrange multipliers to the normal derivative 
of the displacement, and to construct a new approximation of VVb which converges to 
VVb faster than VVbh. 

1. Introduction. Many authors, in the last few years, have studied from a 
theoretical and applied point of view (e.g., [7], [9], [10], [20]) the Hellan-Herrmann- 
Johnson (HHJ) mixed finite element method [13], [141, [15], [16] for the solution 
of fourth-order linear elliptic boundary value problems of the following type: given 
f E L2(Q) 

{ find w EH72(Q) such that 

A2 w f in Q. 

The HHJ scheme is based on a splitting of the problem (1.1) in two second-order 
equations in the unknowns (i/, u), where + = w and uij = 192w/i9x,j. The only 
drawback is that it leads (as the mixed schemes usually do) to the resolution of 
a linear system with indefinite matrix. This is due to the continuity constraints 
imposed on the "stress field" u (u,j - 92w/dx,axj). For this reason, Lagrange 
multipliers, defined at the interelement boundaries, are often introduced as new 
unknowns in order to obtain the required continuity without imposing it a priori 
[12]. This results in a new system of equations in the unknowns (jh, fh,Ah) (re- 
spectively: stress field, displacement, Lagrange multipliers) that are related to the 
solution (uh, Oph) of the original system by the equations 

(1.2) uh _uh 4h=ph 

However, in this new system it is very easy to solve a priori for 1jh in terms of + h 

and Ah. The resulting system in the unknowns (/h, Ah) now has a symmetric and 
positive definite matrix, and therefore many numerical methods become available 
for its solution. 

In view of the relations (1.2), the estimates for u - uh and / _ O h, proved for 
instance in [16], [7], [3], can still be used for the new system. On the other hand, 
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18 M. I. COMODI 

we have now computed a new approximation, Ah, that we would like to interpret. 
From the physical point of view, Ah represents the rotations in the normal direction 
at each interelement boundary (Ah 6Dw/6n) which are often used by engineers. 
However, a precise estimate of the error IlAh - 9w/9nll (in some suitable norm) 
was still lacking. 

A similar problem has been solved in the case of second-order problems ([2], [5]): 
the authors prove both the convergence of the Lagrange multipliers and the possi- 
bility of improving the error bounds obtained for the original scheme by suitably 
exploiting the information provided by the new unknowns Ah. 

Arnold and Brezzi [2] have analyzed the Hellan-Herrmann-Johnson scheme in the 
case k = 1 (k is the local degree of ph) with a technique which cannot be generalized: 
they show that the method, for k = 1, is equivalent to a slight modification of the 
Morley method [18]. 

In the present paper we first analyze the HHJ scheme itself and we show a 
superconvergence result for the error Ih- Ph I' I, where Ph is a suitable projection 
operator. The new estimate is of the same nature as the one proved for second- 
order problems in [11]. Then we use the new estimate in order to obtain error 
bounds for the Lagrange multipliers in suitable norms defined at the interelement 
boundaries; finally we exploit the above results for constructing, by means of a 
suitable postprocessing, a new approximation of Vo which converges with higher 
order than Vph. This last estimate is particularly interesting whenever the scheme 
is applied to solve Stokes problems, where, as it is well known, the main interest is 
in the velocity field. 

An outline of the paper is as follows. In Section 2, for the reader's convenience, 
we define the notations which are used in the paper. In Section 3 we recall the 
classical result concerning the HHJ scheme, [3], [13], [14], [15] [16], [7]. Section 4 
is devoted to studying the superconvergence result and the error bounds of the 
Lagrange multipliers. Finally, Section 5 deals with the construction of the new 
approximation for Vo with related error estimates. 

2. Notations and Green's Formulae. Given a convex polygon D of R2 with 
boundary aD and vertices ai (i = 1,2, ..., ND), a scalar-valued function w, and 
a tensor-valued function v = (vij), i, j = 1,2, we denote (using the summation 
convention of repeated indices) by n = (nl, n2) the unit outward normal to aD 
and by t = (tl,t2) = (-n2, ln) the unit tangent to aD. We also set 

W/= aw/wxi (i = 1, 2), 
W/n = W/ nfi, 

W/t = W/jt, 

Mn(v) =vjninj, 

Mnt(v) =vjnitj, 

Qn(v) =vij/inj 

Kn (v) = t Mlat9t + Qn (v) I 
Si(v) = jumps of Mnt(v) at the corners ai of D, i = 1, 2,... , ND. 

Moreover, I im,D I Im and || IIm,D ur Ilm will denote the usual seminorm and 

norm in the space Hm(D) = Wm,2(D). We refer, for instance, to [1], [17] for the 
definition of the Sobolev spaces used in this paper. The following Green's formulae 
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hold for any w E H2(D) and any v E (H2(D))4 such that v12 = V2l, 

(2.1) ID v~jw1~ij dx= -|f vijliwlj dx + Mj M(v)w/, ds 

+ Mnt (v)w/t ds, 

(2.2) f vijliwlj dx = -f vijijw dx + L Qn(v)wds, 

I' f d~~~~~Mnt(V) ND 

(2.3) ] Mnt (v) w/t ds =- at 
w ds + E Si(v)w (ai). 

Then, by combining (2.1)-(2.3), 

ID viiw1ii dx = I 
vijlijw 

dx + L Mn(v)w1n ds 

(2.4) ND 

Kn (v)wds + E Si(v)w(ai). 

In what follows we shall use the notations: 
Pk(D) for polynomials of degree < k on D; 
C or Ci, i E N, for positive constants independent of the data and of the 

decomposition of D, generally with different values at different occurences. 

3. The Hellan-Herrmann-Johnson Seheme. In this section we recall the 
well-known mixed formulation of the model problem (1.1). This formulation allows 
us to approximate the problem by means of the Hellan-Herrmann-Johnson scheme. 
Moreover, we shall recall the main results concerning the convergence of this dis- 
crete scheme, the implementational technique generally applied and the reasons for 
choosing this technique. 

More precisely, let us consider a convex polygon Q of R2, with boundary aQ, and 
let Th be a decomposition of Q into regular triangles T, with boundary AT and sides 

ei, i = 1, 2, 3, whose maximum diameter is less than h. We now introduce the mixed 
continuous formulation of the model problem (1.1) that allows the application of 
the Hellan-Herrmann-Johnson method. For this purpose, we consider the following 
spaces and the following bilinear forms: 

-The space 

(3.1 V = {v =(vij), i,j = 1, 2, V12 = V21, vij E L2() 
vijT (E H'(T) for all T E Th,Mn(v) is c.i.b.}. 

Mn (v) is c.i.b. (continuous at the interelement boundaries) if and only if, for any 
pair (T1, T2) of adjacent triangles, we have 

Mn(vJT,) = Mn (vIT2) on T1 nT2, 

where n is the unit normal to T1 n T2. 
A function v E V has the following norm 

(3.2) IIvII2 = ZTIIVI1l,T 
TETh 
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-The finite-dimensional subspace of V, 

(3.3) Vh = {vh E V, VT E Pk-1(T) for all T E Th}; 

-the space 

(3.4) W = "P, p > 2; 

-the finite-dimensional subspace of W, 

(3.5) Wh = {oh E W, IIT E Pk(T) for all T E Th}; 

-the symmetric continuous bilinear form 

(3.6) a(u, v) = uijvij dx, u, v E V; 

-the continuous bilinear form 

(3.7) b (v, q~) = hE(fT vijlijlj dx-L Mtt(v)4y/t ds), v E V, E We 

Then, with these notations, the mixed formulation of (1.1) is: 

find (u,') E V xW such that 

(3.8a) a(u, v) + b(v, 4) = 0 for all v E V, 

(3.8b) b(u, 4) = ff dx for all 0 E W; 

and its numerical approximation, by means of the Hellan-Herrmann-Johnson 

scheme, is: 

( find (uh, /h) E Vh X Wh such that 

(3.9a) J a(uh vh) + b(Vh, ?Ih) = 0 for all vh E Vh, 

(3.9b) b(Uh, qh) = f fqh dx for all oh E Wh. 

It is well known that both problems (3.8) and (3.9) have a unique solution (u, 4) 
and (uh, 'h), respectively, where (u,4) is related to the solution of the model 

problem (1.1) in ithe following way: uij = wlij, i, j = 1, 2; k = w. 

Many authors have contributed to the mathematical study of this method ([31, 
[7], [13], [14], [15], [16]). We recall in the following propositions some basic results 

in approximation theory and in error estimates that will play a fundamental role 

in our study. 

PROPOSITION 3.1. Define the operator 1rh E L(V, Vh) in the following way. 

given v E V, for every edge e and for every triangle T of the triangulation Th, 

(3.10) jMn(v-lrhV)qk- ds _ 0 for all qk- E Pk-1(e), 
e 

(3.11) (Vij - 7rhVij)qk-2 dx = 0 for all qk-2 E Pk-2(T). 

Then 

(3.12) b(v-_ v, h) =0 for all h E Wh 
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Moreover, if v E V n [Hk(Fj)]4, 

(3.13) liv - rhVII0 < Chk lVk. 

PROPOSITION 3.2. Define the operator Ph E L(W, Wh) in the following way: 
given q E W, for every vertex a, for every edge e, and for every triangle T of the 
triangulation Th, 

(3.14) Phq5(a) = (a), 

(3.15) f( - PhO)qk-2 ds = 0 for all qk-2 E Pk-2(e), 

(3.16) J(q5-Phq)qk3 dx = 0 for all qk-3 E Pk3(T). 
T 

Then 

(3.17) b(vh, q-Jhq) = 0 for all Vh E Vh. 

Moreover, if q e W nfHk+1 (Q), 

(3.18) 11k - Phqllo < Ch + 01k+1. 

PROPOSITION 3.3. Let (u, V)) be the solution of (3.8), (uh, ?Ih) the solution of 
(3.9), and let w E Hk+2(n) n H(2(Q) be the solution of (1.1); then 

(3.19) IIu - uhllo + II|/ -_ VhjjI < Chk(IwIk+l + lWIk+2). 

Moreover, 

(3.20) ||- _ho < Chk+l(lwlk+l + IWIk+2). 

We now come to the first topic of this paper. The matrix arising from the scheme 
(3.9) is indefinite. To circumvent this inconvenience, the continuity constraint on 
the bending moment Mn(vh) is eliminated from the space Vh, and new unknowns 
(Lagrange multipliers), defined at the interelement boundaries, are introduced [12]. 
For this purpose, we introduce: 
-the set 

(3.21) Eh = set of the internal edges e of Th; 

-the spaces 

(3.22) V {vh = (vi), i,j = 1,2, v2 =V21,VXjIT E Pk 1(T) 
for allTE Th}, 

(3.23) Mh = {IPh E L2 (Eh), Uhle E Pk-l(e) for all e E Eh}; 
-the continuous bilinear form 

(3.24) c(v, Ph) T Mn(vh )Ph ds, vh E Vh Ph E Mh. 
TETn 

Now consider the following problem: 

find (Uh' I9)hI Ah) E Vh X Wh X Mh such that 

(3.25a) a(ih, Vh) + b(Vh, ?h) = C(Vh, Ah) for all vh E Vh, 

(3.25b) j (ijh Ih) = fXhdX for all qh e Wh, 

(3.25c) c(jh) = 0 for all lh E Mh. 
It is easy to prove the following proposition. 
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PROPOSITION 3.4. Problem (3.25) has a unique solution (1jh, +3h,Ah) such that 
u1h = uh and ~h -= I)h where (uh, ?h11) is the solution of (3.9). 

We shall identify, then, jjh with uh and 1 h with Ah On the other hand, Ah 

clearly approaches ')/,, at the interelement boundaries. We wish to find an error 
bound, in some suitable norm, for this approximation. This will be the topic of the 
next section. 

4. Error Estimates for the Lagrangian Multipliers. In [2], results similar 
to those we want to obtain are proved for second-order elliptic problems; the authors 
of [2] also treat the Hellan-Herrmann-Johnson scheme, but only in the case k = 1 
and with a technique which does not work for k > 2. In this section we shall 
employ the "strategy" used in [2], for second-order elliptic problems, in order to 
obtain estimates on (3.25) for k > 2. To do this, we first have to extend the 
techniques described in [11], [5] for second-order elliptic problems. In particular, 
we shall consider duality with respect to HT(Qj) instead of Hor(Q2). 

Definition 4.1. Given X E L2(Q1), X 0 0, we set 

(4.1) IIXII-r sup (p, x) 
pEHr(Q) IlPlIr 

pWo 

Moreover, we shall consider the error equations obtained from (3.8), (3.9) and from 
Proposition 3.2 with 

(4.2) z = u-uh, 

(4.3) hV= _ V)h. 

We have 

(4.4) a(z,vh) +b(Vh,) =0 for all v EVh, 

(4.5) b(z, oh) = 0 for all oh E Wh. 

We can prove the following lemma. 

LEMMA 4.1. Let z E V and ( E Wh be given by (4.2) and (4.3). Then for 
-2 < r < -1 + e (where e depends on the maximum angle of ?2) 

(4.6) I111-r < C(hmin(r+2,k) IIzIIo + h1min(r+3,k) IIU - hUjIl). 

Proof. Let X be the solution of the problem 

(4.7a) fA2x=p in Q, 

(4.7b) lX = X/n = 0 on al. 

Since Q is a convex polygon, we have 

(4.8) 11X11r+4 < ClIlIrl. 

With the solution X E HT+4 n HO2 of (4.7) we associate a tensor-valued function v 
defined by 

(4.9) Vii = X/ij, i,j = 1,2, 
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and we consider the equations (4.4) and (4.5). By Green's formula, the orthogo- 
nality (3.12), and by Proposition 3.2 we get 

(4.10) (p, 0) = -b(v, 1) = -b(7rhV, 1) = a(z, 7rhV), 

(4.11) a(z, v) = -b(z, X) = -b(z, X- PhX), 

that is, 

(4.12) (p,= a(z, 7rhV -v) + b(z, X- PhX) 

= a(z, rhV - v) + b(u - rhU, X - PhX). 

By virtue of the definition of the form b(., .), (4.2), (3.15), and the regularity of u, 
we have 

b(u - rhU, X - PhX) = ZT! (Ui irhUij)/i(X - PhX)/j dx, 
TETh 

so that 

(4.13) I(P, ()I < C(IIZIIOIrhv - Vilo + Ilu -rhUII1IIX - PhXIll), 

from which, using (3.13), (3.18), (4.8), (4.9) and (4.1), the estimate (4.6) follows. 0 

Remark. The estimate (4.6) will be useful if k > 2; if k = 1 it is more useful to 

obtain a slightly different estimate. Actually, the term b(u -rhU, X - PhX) which 

appears in (4.12) can easily be estimated as Ib(u-wrhU, X-PhX)I < IlfIIoIIx-PhXIIo. 
By using the latter formula we can obtain 

(4.14) 11I11l < C(hIIzIIo + h2 II llo). 

Thanks to the previous lemma we can now give an estimate which will be essential 
both for measuring the error in the Lagrange multipliers and in postprocessing. 

THEOREM 4.2. Let '/ and I)h be the solutions of (3.8) and (3.9), respectively, 
and let PhV/ be given by Proposition 3.2. Then 

IIPh'1 _ 
- h 1 < Chk+1 (lWk+l + iWIk+2 + Ilf IIOkl) 

Proof. The above estimate follows from (4.2), (4.3) and (3.19) by using (4.6) 
with r =-1, if k > 2, and (4.14) if k= 1. 0 

We are now able to bound the error Ah - defined on Eh. Following the 

development of [2], we first of all define the norms on Mh: 

(4.15a) lIh IO,h =E ZIIh IO,eX 
eEEh 

(4.15b) lIh I-1/2,h = E IelIIIh IO,eX 
eEEh 

where lel is the length of e, and we define 

(4.16) Qhq5 = orthogonal projection of OIEh onto Mh in the norm (4.15a). 

We can then state the following result. 
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THEOREM 4.3. Let w be the solution of (1.1), (u,b) the solution of (3.8), 
(uh, oh ,Ah) the solution of (3.25), and let Pht/' and QhO/, be given by Proposi- 
tion 3.2 and (4.16), respectively. Then 

(4.17) IAh - QhI/nI-1/2,h < Chk+l(IWIk+l + IWIk+2 + lIf 110kl). 

Proof. The estimate (4.17) is an obvious consequence (see (4.15), Theorem 4.2, 
and Proposition 3.3) of 

(4.18) IIAh - Qh4'/nIIO,e < C(h' 1I1(u0-u)IIo,T + h"/ IIhI _-,h 111,T)- 

It thus suffices to prove (4.18). 
We consider a triangle T E Th, with boundary aT, an edge e E aT, and we 

consider v E 7h uniquely defined by 

{A~fh Qo on e, 
(4.19) M (v) = 

0 ~~on 9T\e, 

(4.20) Vijqk-2 dx = 0 for all qk-2 E Pk-2(T). 

By easy scaling arguments we get 

(4.21) IIVIIO,T ? Ch/2 IlAh -QhI/nI!o,e. 

Inserting v in (3.25a) and using Green's formula, Proposition 3.2, and (4.16), we 
obtain 

(4.22) / ujvjj dx +/ vi| iib7j dx-f Mnt(V)tbh ds - Mn(v)Ah ds = 0, 

j uijv.j dx + f vi1/ib/j dx - Mnt(v)b1/t ds - Mn (v) )n ds 

(4.23) = f uijvi; dx + / vij/iPhO/) dx - Mnt(v)Phy/t ds 

- Mn(V)Qh 0/n ds. 
e 

Adding the last equations, the definition (4.19) and, once more, Green's formula, 
yields 

(lAh -QhO/n jle = [(uj - uij)viv dx - vij(I -Pho)/2j dx 
(4.24)TT 

+ j(Ah - QhV)(n) - Ph4)/n ds. 
e 

By known trace theorems [19] and by simple scaling arguments we have 

(4.25) j(Ah -QhV)/n) (Q)h- Ph4')/n d s 

? ClIAh - QhV1/n1IO,e(hT1/2jV)h - PhWZ)1,T + h1/2II)h - Ph'412,T). 

Then, by applying (4.21), (4.20) and (4.25) we get (4.18) from (4.24). 0 
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5. Postprocessing of the Hellan-Herrmann-Johnson Scheme. In this 
section we want to "improve" the approximation of the original unknowns by means 
of a suitable postprocessing. The problem can be solved by different techniqes (e.g., 
[1], [41). We shall use the estimates previously proved: 

(5.1) - PhtPIIl < Chk+l(Iwlk+l + IWIk+2 + Ilf IIo0kl) 

and, for all e E Eh, 

(5.2) IlAh - QhIP/nIlO,e ? C(h/21u - Uhllo ,T + h-l/2I11Vh - Ph'1Il1,T), 

in order to find a "better approximation" of V+. 
It is well known that the Hellan-Herrmann-Johnson scheme is mainly applied to 

either solve plate problems (then 4' := transversal displacement) or to solve Stokes 
problems (then 4' := stream function); an approximation of V+', which represents 
the velocity field, will be particularly interesting for Stokes problems. Before defin- 
ing this "new" approximating function, let us remark upon the orthogonalities 
arising from the definition of Phq. 

PROPOSITION 5. 1. Let X E W, and let Phc E Wh be defined as in Proposi- 
tion (3.2). Then, for all e E Eh, 

(5.3) J( - Phq)/tqk-l ds = 0 for all qk-1 E Pk-1(e), 

and for all T E Th, 

(5.4) f( - Pho)/jqk-2 ds = 0, j = 1, 2 for all qk-2 E Pk-2(T). 

Proof. Consider a triangle T E Th, with boundary AT, and an edge e of AT. 
The conditions (3.14) and (3.15) immediately imply (5.3) with qk-2 = qk-l/t 
(t: unit tangent to e). Analogously, (3.15) and (3.16) imply (5.4), since 

f( - Phq)/jqk-2 dx =-f - Phq)qk-2/j dx 
(5.5)T 

+ j( - Phq)qk-2nj ds, j = 1,2. D 
T 

Now we shall use I)h and Ah, which are respectively a polynomial of degree < k 
in each T E Th and a polynomial of degree < k - 1 on each e E Eh, in order to 
define a vector r belonging to the following space: 

(5.6) Sh = {u E [LP(Q)], or = (aj), j = 1, 2, 7jIT E Pk(T), 
j = 1, 2, for all T E Th}, 

which converges to V4' faster than VV)h. 
Unfortunately, we have to distinguish between the cases k odd and k even, as 

the technique we shall use for k odd does not work for k even. However, we shall 
succeed in our task following the strategy suggested in [6]. 

Let us introduce the following lemma. In this section, the index i will assume 
the values 1, 2, 3, and the index I the values 1 or 2. 
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LEMMA 5.2. Let k be a nonnegative odd integer, and let T be a triangle of Th, 
with edges ei. Then, given ,un, pbt E L2(ei), and k E [L2(T)]2, a vector a E Sh is 
uniquely defined on T by the following conditions: 

(5.7) l (an -n)qk-j ds = 0 for all qk-1 E Pk1(ei), 
ei 

(5.8) (ot -pt)qk-1 ds = 0 for all qk-1 E Pk_1(ei), 
ei 

(5.9) (crl- 1)qk3 dx =O for all qk-3 E Pk_3(T). 
T 

Moreover, 

(5.10) IIUIIO,T ? C (C h 1/2 E(I/nIIo,ej + Ilt IIo,ei) + 11IIo,T) - 

Proof. The number of equations and unknowns of the system (5.7)-(5.9) is 

(5.11) 3k + 3k + (k - 2)(k - 1) = (k + 1)(k + 2), 

i.e., the dimension of Sh; then, to verify that the conditions (5.7)-(5.9) identify 
or in a unique way, we have only to prove that taking Pn = /Ut = q$a = 0 we get 
or-0. In this case, the conditions (5.7), (5.8) imply that each component of a is, 
on each edge, a multiple of a Legendre polynomial of degree k. Since k is odd, these 
polynomials have to take values of opposite signs at the endpoints of each edge; 
then the continuity of a, yields at = 0 on AT, or a has the form at = AjA2A3pkj 3, 

Pk3 E Pk-3(T), Ai := barycentric coordinates on T. Now, (5.9), with q1 = 0, 

= k)3, immediately gives a- 0. A standard scaling argument leads to 
(5.10). O 

We are finally able to prove the desired estimate. 

THEOREM 5.3. Let k be a nonnegative odd integer, 

(U, V)) E [H k(Q)]4 X {Hk+2 (Q) n HO2(Q)} 

the solution of (3.8), w = ?b the solution of (1.1), (uh ?/hh Ah) E Vfh X Wh X Mh the 
solution of (3.25), and let r E Sh be uniquely defined by the following conditions: 

(5.12) f (in - Ah)qk-, ds = 0 for all qk-1 E Pk_1(ei), 
ei 

(5.13) / (Tt - 7h5 )qk-I ds = 0 for all qk-1 E Pk-1 (ei), 
ei 

(5.14) I (rl -_ )hqk-3 dx = 0 for all qk-3 E Pk_3(T). 

Then 

(5.15) h| - VVblIo,T < Ch k+ (IW1kl + IWIk+2 + If o106kl). 
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Proof. We define an auxiliary function r* E Sh by means of the following equa- 
tions: 

(5.16) I (7*n-)/n)qk-1 ds = 0 for all qk-j E Pk1(ei), 
ei 

(5.17) f (rt - /t)qk-1 ds = 0 for all qk-1 E Pk-l(ei), 

(5.18) f(r,* - V-/1)qk-3 dx = 0 for all qk-3 E Pk_3(T). 
T 

Known arguments of interpolation imply 

(5.19) IIr* - VV5IfO < Chk+lIVlk+2, 

and by (5.12)-(5.14), (5.16)-(5.18), (4.16) and Lemma 5.1 we get for all qk-1 E 

Pk.1(ei) and for all qk-3 E Pk-3(T), 

(5.20) f(rn - r*n)qk-, ds = (Ah - QhV/n)qk-1 ds, 

(5.21) (rt - *t)qk-, ds = f (' - Ph/) /tqk-1 ds, 

(5.22) (Tr - rl )qk -3 dx = I (h- Ph/) /lqk-3 dx. 

This means, by Lemma 5.2, that 

|Tr - |IO,T 

(5.23) 
<C (h 1/2 (IAh - Qh I/nIIO,es + 

j,h 
- 

PhOIll,ei) 
+ 

j,h PhOI1,T 
) 

Then (5.15) is a simple consequence of the triangle inequality, (5.23), (5.19), (5.2) 
and (5.1). O 

Let us now treat the case k even. 
As we pointed out, the previous technique no longer works, but following [6], 

we shall find the desired estimate increasing by one the number of the degrees 
of freedom (hence also of the unknowns) which determine r. More specifically: 
given Lk(ei), the Legendre polynomial of degree k on ei, assuming the value 1 at 
the endpoints of ei, we define Xk+ 1 E Pk+1 (T) and -1k E Pk (T) by the following 
conditions: 

(5.24) Xk+ 1(ai) = 0, ai the corners of T, 

(5.25) Xk+1/tlei 
= Lk(ej), 

(5.26) f Xk+lqk-2 dx = 0 for all qk-2 E Pk-2(T), 

(5.27) Yk = Lk(ei) = Xk+l/t on aT, 

(5.28) f 'Ykqk-3 dx = 0 for all qk-3 E Pk_3(T), 

and we define the space 

(5.29) Sh = {o E [L2 (Q2)] 2,rXIT E Pk(T) 1 {Xk+1} for all T E Th}. 

We can now define r E Sh which satisfies (5.15). 
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THEOREM 5.4. Let k be a nonnegative even integer, (u, 4'), w and (uh, 4'h, Ah) 

as in Theorem 5.3, and let T E Sh be defined by (5.12)-(5.14) and 

(5.30) f(rt - 4'I)A-Yk dx = 0. 

Then the error bound (5.15) still holds. 

Proof. Since the number of degrees of freedom of r is equal to the dimension of Sh, 

we have only to show that, taking in (5.12)-(5.14) and (5.30) Ah = +/h = hl= x0 

we get r _ 0. Now, if r has the form 

(5.31) rI Mk + fllXk+1, f1 E R, 

(5.12) and (5.13), with qk-1 = -1k,t, and summing over i, imply, owing to (5.24)- 

(5.27), that 

(5.32) f ds = O, i.e., k = O, 
T 

and this means that, once more by (5.12) and (5.13), r has the form 

(5.33) Tr = al1k + AjA2A3Pk-3' 

where al E R, pkj)3 E Pk_3(T) and Ai are the barycentric coordinates of T. Taking 
(1) w e in (5.14) qk-3 = Pk3, we get 

(5.34) fT(al)k + AtA2A3pk-3)Pk_3 dx 0, 

from which, by (5.28), p2)3 _ 0 or 

(5.35) T1 = alYk. 

Then (5.30) and (5.27) give 

(5.36) I al-YkAk = -allIYkI,T 

i.e., al = 0. 
The same arguments used in Theorem 5.3 complete the proof. In particular, 

observe that, owing to (5.4), we have 

IT - r*)A-k dx = I h- Ph')/I Ayk dx. 
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